A fast Fourier-collocation method for second boundary integral equations
نویسندگان
چکیده
منابع مشابه
A Discrete Collocation Method for Boundary Integral Equations
We propose a discrete collocation method for the boundary integral equations which arise from solving Laplace's equation u = 0. The Laplace's equation is deened on connected regions D in R 3 with a smooth boundary S. The piecewise polynomial interpolation in the parametrization variables along with the collocation method is used, and a numerical integration scheme for collocation integrals is g...
متن کاملA Fast and Accurate Expansion-Iterative Method for Solving Second Kind Volterra Integral Equations
This article proposes a fast and accurate expansion-iterative method for solving second kind linear Volterra integral equations. The method is based on a special representation of vector forms of triangular functions (TFs) and their operational matrix of integration. By using this approach, solving the integral equation reduces to solve a recurrence relation. The approximate solution of integra...
متن کاملPiecewise Polynomial Collocation for Boundary Integral Equations
This paper considers the numerical solution of boundary integral equations of the second kind for Laplace s equation u on connected regions D in R with boundary S The boundary S is allowed to be smooth or piecewise smooth and we let f K j K Ng be a triangulation of S The numerical method is collocation with approximations which are piecewise quadratic in the parametrization variables leading to...
متن کاملA collocation method for solving integral equations
A collocation method is formulated and justified for numerical solution of the Fredholm second-kind integral equations. As an application the Lippmann-Schwinger equation is considered. The results obtained provide an error estimate and a justification of the limiting procedure used in the earlier papers by the author, dealing with many-body scattering problems in the case of small scatterers, a...
متن کاملMultistep collocation method for nonlinear delay integral equations
The main purpose of this paper is to study the numerical solution of nonlinear Volterra integral equations with constant delays, based on the multistep collocation method. These methods for approximating the solution in each subinterval are obtained by fixed number of previous steps and fixed number of collocation points in current and next subintervals. Also, we analyze the convergence of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2010
ISSN: 0377-0427
DOI: 10.1016/j.cam.2009.12.012